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In a fast paced and competitive environment in our society today, commuting from place to 

place in the shortest possible time seems to be a necessity. As a result, safety issues when 

traveling on the road are not always our first priority. Hence, aggressive driving behaviours such as 

fast lane change, tailgating and sudden braking which often lead to accidents are likely to occur. 

According to statistics, the number of casualties from road traffic accident in Thailand in 2013 is 

585,324. Out of that total, there are 6,834 deaths [1]. At present, Thailand has the second most 

dangerous roads in the world with 44 road deaths per 100,000 people [2]. Hence, this is one major 

issue that needs to be solved quickly. 

 

It has been found that when a driver is monitored and driving events are recorded the chances of 

aggressive and dangerous driving behaviour are reduced [3]. There are a number of commercial 

products available in the market using in-vehicle data recorders equipped with a wide variety of 

sensory devices such as GPS receiver and often a video camera [4]. Examples of these products 

are used in fleet management systems and taxi operators where every driver can be traced to 

ensure that they follow designated routes and do not violate the speed limit. 

 

Many application domains such as logistics and intelligent transport systems benefit from this 

network of sensory devices [5]. Examples of these can be found in [6] where real-time driving data 

from controlled test crashes is stored and analyzed in order to detect possible collisions and also 

assess the level of damage of the potential crash. Car manufacturers have taken this idea and 

developed an advanced driver-assistance systems (ADAS) such as collision prevention and 

avoidance systems [7]. At present, this can only be found in high-end models as the sensors 

required for ADAS system are expensive making it very unlikely to be included in lower priced 

vehicles. 

 

Human error is one of the three key contributing factors to road traffic accidents, the other two 

being vehicles capabilities and road infrastructures. The fundamental elements leading up to 

aggressive driving behaviours are from different driving maneuvers or events that occur during a 

journey such as harsh braking and acceleration, rapid turning and rapid lane change. Therefore, it 

is essential to be able to detect these fundamental driving events and classify whether or not they 

are aggressive in order to recognize potential crashes.  

 

All of the driver monitoring systems discussed so far make use of in-vehicle data recorders which 

possess the ability to store relevant driving data [4,6,7]. However, these recorders are attached to 

one vehicle only and are not removable to be taken off and used in other vehicles. An alternative is 

to replace in-vehicle data recorder with a smartphone since it is easily accessible, widely available 

and low cost. In addition, modern smartphone models at present are embedded with multi-sensors 

on-board which enables the capability similar to in-vehicle data recorders. Considering all these 
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used to collect, process and analyze driving data as well as detect and classify aggressive driving 

behaviours in order to alert drivers when they are being reckless. 

 

The multi-sensing capabilities of smartphones available in the market enable us to collect a rich 

vein of raw data. Accelerometer data provides an insight into the longitudinal and lateral movement 

of the phone while the on-board GPS receiver provides us with location data in terms of latitude 

and longitude. In the literature, smartphones have already been deployed as a tool to collect data 

for the analysis of driver's behaviour and external road conditions in [8] and [9]. With all the data 

and sensors we are able to detect vehicle's movement when a smartphone is placed inside the 

vehicle of interest. As a result, typical driving events such as turning left and right, braking and 

accelerating can be detected. It is important to detect these typical driving events as they are 

fundamental to the evaluation of driver behaviour. This would be highly beneficial to many 

application domains in the road safety perspective such as an automated advanced warning 

system. 

 

The objective of this research is two-fold. Firstly, the aim is to detect and classify driving behaviours 

using different sensors available on modern smartphones. Data collected from smartphones 

sensors will be analyzed so that different driving events such as turning left, right, braking and 

acceleration can be identified. Furthermore, these events will be further assessed in order to 

determine if they are classified as aggressive. At present there is no measure to evaluate driving 

styles amongst drivers in Thailand. The second objective of this research is to implement the 

detection algorithm on a smartphone platform as an application with a tool to produce appropriate 

driving score. It is aimed that the application should be available on iOS and Android, the major two 

operating systems in today’s marke 
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 In this project, three sensors from a smartphone are considered. Firstly, the 3-axis 

accelerometer measures the force of acceleration whether caused by the phone's movement or 

gravity. The three axes correspond to lateral, longitudinal and vertical accelerations. In this project 

we are only interested in movements along the lateral and longitudinal axes which refers to side to 

side movement and forward and backward movement respectively. In real-world scenarios lateral 

acceleration or side-to-side movements represent driving events such as turning left and right and 

lane change while longitudinal acceleration corresponds to vehicle braking and accelerating. 

 

The second sensor, magnetometer, measures the strength of magnetic field which can provide us 

a sense of direction at which the smartphone is pointing towards with respect to the magnetic north. 

It is a sensor usually found in a compass. Raw data from magnetometer will be utilised as an 

indicator for the detection of driving events in lateral domain. Finally, a GPS receiver which 

provides positioning and speed data of the vehicle that the smartphone is attached to. Overall, 

accelerometer and magnetometer data are sampled at a rate of 5Hz where one sample is recorded 

every 200ms. Data from GPS receiver is sampled at 1Hz. 

 

 

 

 

 

 

 

 

 

 

Figure 1: 3-axis Accelerometer 

 

Figure 1 shows a typical smartphone with relevant axes in accordance with the measurement from 

accelerometer. The lateral movement is denoted by the x-axis while the longitudinal movement is 

denoted by the y-axis. 

 

Based on the measurement of raw data in the previous section, fundamental driving events can be 

established and is summarized in Table 1. It can be seen from the table that 13 driving events are 

considered in total, 10 in the lateral movement domain and 4 in the longitudinal domain. These 

include standard and aggressive events. 
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Table 1: Driving Events. 

Lateral Longitudinal 

Right/Left Turn (normal and aggressive) Braking (normal and aggressive) 

Right/Left Lane Change (normal and aggressive) Acceleration (normal and aggressive) 

U-turn  

 

 

2.1 Literature Review 
 

 Recent technological advancements in smartphones capabilities coupled with an increasing 

smartphone adoption rates worldwide has initiated the development of many new ITS related 

applications. The work in [10] proposed a low cost lane departure warning system implemented on 

a smartphone in order to bring advanced technology to a device which is widely available. The 

main idea of the work in [10] is to apply image processing techniques to the images captured from 

smartphone camera. In addition, their proposed algorithm is optimized such that it can tolerate low 

quality images and is robust to run on smartphones with lower processing power. 

 

Mohan et al. proposed a system where smartphones are utilized as a means to monitor road and 

traffic conditions [11]. This was achieved by using sensors onboard smartphones such as 

accelerometer and GPS sensor to detect potholes, bumps as well as vehicles braking and honking. 

The system has been implemented and tested where promising results in terms of the 

effectiveness of sensing functions have been reported. Similar to [11], the approach proposed in 

[12] deploys a smartphone app which collects data from multi-sensors onboard to analyze road 

conditions obtaining at the same time high accuracy results in classifying different road defects. 

 

Johnson and Trivedi proposed an approach in order to classify different driving styles based on 

data collected from smartphones [9]. In their approach, driving styles can be in the form of normal, 

aggressive and very aggressive. The results from their work reveal that various sensors on 

smartphones can provide good source of information for an accurate measure and classification of 

different driving styles.  Furthermore, the work presented in [12] discusses about the use of 

smartphones to report and detect car accidents in real-time. Similar to [11], the approach in [12] 

also utilizes GPS receiver and accelerometer data in order to detect car accidents. 
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3.1 Driving Event Detection Algorithm 

 

One of the advantages of the use of accelerometer sensor on the smartphone is that it is 

independent of external factors such as obstacles blocking line of sight of signal and weather 

conditions. An example of this is that the lost of GPS signals due to no line-of-sight will result in 

data loss. The accelerometer provides measurements of acceleration of the vehicle that the 

smartphone is attached to in 3-axis domain, vertical, longitudinal and lateral as shown previously in 

Figure 1. Data from accelerometer sensor is recorded at a rate of 5Hz in this work in order to form 

a time series of acceleration of the smartphone. 

 

The proposed algorithm to be used in this project is a pattern matching algorithm. It is based on the 

Dynamic Time Warping (DTW) technique. Dynamic Time Warping was originally implemented in 

order to perform speech recognition by Sakoe and Chiba [13]. It has then been utilized extensively 

in the field of computer sciences such as the approach in [14] where DTW was used to find 

patterns in time series. In general, Dynamic Time Warping provides a similarity measure between 

two signals, namely the incoming and the reference signals. The main feature of DTW is that it 

allows for stretched and compressed portions of the two signals to be compared by compensating 

for length differences in the two signals while taking into account of the non-linearity of the length 

differences between the incoming signal and the reference signal. This feature is not possible with 

a traditional pairwise comparison between the two signals using the Euclidean distance. In this 

project, the concept of Dynamic Time Warping will be used for the detection of driving events. Raw 

data from various sensors from a smartphone will be collected to form strings of time series. A brief 

description of the DTW algorithm is given below. 

 

Consider two time series X and Y with length n and m respectively, where each time series is 

represented by X = {x1, x2, ..., xi, ..., xn} and Y = {y1, y2, ..., yj, ..., ym}. An n x m matrix is constructed 

with time series X and Y on the top and left sides of the grid respectively as shown in Figure 2. 

Each element (i,j) of the matrix contains the Euclidean distance between the points xi and yj on the 

two corresponding time series, where 

 

d(xi,yj)=(xi – yj)2. 

 



 

 9 

Final  
Report  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dynamic Time Warping Grid 

 

The lower the value of d the closer the two points are to each other. Essentially, DTW tries to find 

an optimal alignment of the two time series. This idea is applied in this work where the time series 

of the pre-recorded template is aligned with the raw data. The next step of DTW is to identify a 

warping path W which consists of the minimum distances between the two points on the time series 

where the kth element of W is denoted by wk = (i, j)k [15]. The next stage is to sum these minimum 

distances along the warping path W in order to obtain the cost function C as described below: 

 

𝐶 𝑋,𝑌 = 𝑤!(𝑥!"𝑦!")
!

!!!

 

 

Finally, the reference signal with the lowest total cost C is the best match to the given incoming 

signal. 
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Figure 3: Overall of the Algorithm 

 

Figure 3 illustrates the proposed the pattern matching algorithm to detect driving events based on 

the use of DTW algorithm. The algorithm is divided into three main stages. 

 

1) Pre-Processing: 

Data pre-processing is an initial stage of the pattern matching algorithm. Raw data collected from 

the accelerometer sensor is pre-processed in order to smooth out the effect of unwanted noise in 

the signals. In this paper a simple moving average is utilized to achieve that goal. 

 

2) Pattern Matching: 

This is the stage where DTW algorithm is deployed to find the best match using a given reference 

pattern for all driving events in Table I. Some of the reference driving patterns are illustrated in 

Figure 5. It can be seen that there is an apparent dissimilarity in the shape of the waveforms of an 

ordinary driving event, in a green line, and an aggressive driving event, in a red line. Aggressive or 

sudden driving events tend to possess a large change in acceleration values. The essential goal in 

this stage of the algorithm is to use the reference driving patterns to find the best match for the 

incoming driving data. In order to generate appropriate reference patterns for each driving event, a 

training data set is obtained through a real- world experiment for our pattern matching algorithm. 

These reference patterns are then used as a template to match the incoming signals from 

accelerometer sensor in the test data set. In this paper, 70% of data samples are utilized as 

training data, resulting in 30% to be used as test data set. At the completion of the algorithm, a total 

cost of the alignment path C is obtained for all of the templates selected to cover all 12 events. 
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At this point the algorithm will decide which of the reference patterns is the best match to the 

incoming signal. Specific constraints are set in accordance to each of the 13 different driving events. 

One of the constraints is the similarity score produced by the DTW algorithm, where a score of zero 

would indicate two patterns being exactly alike. The fact that driving events are categorized into two 

domains, lateral and longitudinal movements as described in Table I means that there are two 

pools of events to select depending on the source of incoming signals. 

 

3.1.1 Validation of Driving Event Detection Algorithm 
 

 As a starting platform to the project the driving event detection algorithm was evaluated in 

terms in order to assess its accuracy. A real world experiment was set up for data collection. In this 

experiment raw data was collected using a single driver in one vehicle, 2010 Toyota Vigo pick-up 

truck. The reason that this was selected as a test vehicle is that pick-up trucks are the second most 

accident prone on the road in Thailand behind motorcycles. This makes it the most risky amongst 

vehicles with four wheels. Overall, approximately 120 driving events in urban and rural road 

environments were recorded. The route chosen was approximately 40km long, from central 

Bangkok to the outskirt on the north west of the city. Data was collected using Android-based 

smartphone with a tailored made application which allowed a team of traffic engineering 

researchers to record driving events in real-time where corresponding timestamps were noted in 

order to label our ground truth data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 A Smartphone collecting data        Figure 5 Screenshot of data collector application 

 

Figure 4 shows a smartphone being used to collect driving data with our mobile application while 

Figure 5 shows a screen shot of data collector application. 
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on the performance of driving event detection. These are the detection rate (DR) and the false 

alarm rate (FAR) which are defined in the following equations.  

DR = Number of Driving Events Detected
Total Number of Driving Events

×100 , 

where the numerator is the number of driving events detected by the algorithm and the 

denominator is the total number of driving events indicated by a team of traffic engineering 

researchers. 

FAR = Number of Alarms not in Specified Duration
Total Number of Alarms

×100 , 

where FAR is expressed as false alarm rate per second in %. At the time of writing, no other work 

in the literature has reported FAR for the detection of driving events using sensory data from 

smartphone. 

 

Figure 6 Example of raw data collected from accelerometer sensors illustrating turning 

events 

 

A selection of raw data from accelerometer is show in Figure 6. Four types of driving events are 

shown. These are right turn, sudden right turn, left turn and sudden left turn. 

 

After data collection, our algorithm is applied to raw data in order to obtain driving events detected 

by the proposed algorithm. The result of that is compared with the ground truth as indicated by a 

team of researchers sitting in the vehicle during the journey.  

 

Table 2 illustrates the confusion matrix of the pattern matching algorithm for driving events 

detection. The diagonal entries highlighted in green are the number of events that have been 

correctly detected by the algorithms according to ground truth data. The numbers in each entry in 

the table denotes the number of occurrence of each event detected while the number inside the 

parenthesis denotes the detection rate (DR). The cells highlighted in red denote the events which 

have been incorrectly detected as they are from completely different domains. For example, a 

brake event has been detected instead of an acceleration event. The parts that are highlighted in 
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detect longitudinal events when the vehicle is moving in the lateral direction and vice versa. For 

example, a right turn event was detected by the algorithm when the actual event was a sudden 

acceleration. 

 

It can be seen clearly from the figure that the Pattern Matching Algorithm performs well as most of 

the detections from the algorithm are in the green diagonal elements. 12 types of driving events 

have been observed. These are brake (B), sudden brake (SB), accelerate (A), sudden accelerate 

(SA), left turn (L), sudden left turn (SL), right turn (R), sudden right turn (SR), lane change left (CL), 

sudden lane change left (SCL), lane change right (CR) and sudden lane change right (SCR). In 

total there are approximately 83 usable driving events noted by the team of traffic engineering 

researchers. 

 

Table 2: Confusion Matrix for the Driving Event Detection Algorithm 

 
 

From Table 2, high percentages of detection rate of events being correctly identified across all 

driving events in both lateral and longitudinal axes have been reported. The detection rate of the 

pattern matching algorithm range from 37.5% up to 100% with 11 out of 12 types of driving events 

achieving above 50% detection rate. The only exception is the sudden brake event with 37.5% 

detection rate reported. Some of these sudden brake events have been detected as a brake event. 

One possible reason for this misdetection is the fact that the change in acceleration value might not 

be high enough for the algorithm to detect it as a sudden brake event. This could be improved by 

re-training the algorithm to recognize more sudden brake event patterns. In addition, only one 

detection has been identified in the incorrect driving domain indicated in a cell highlighted in red 

and no lateral-longitudinal cross detection have been reported. For all driving event types, a small 

number of events have been incorrectly detected. However, these detections appear within the 

same driving event domain. For example a sudden lane change left detected instead of a normal 

Event B SB A SA L SL R SR CL SCL CR SCR

B 17((94.44) 1((5.56)

SB 4((50.00) 3((37.50) 1((12.50)

A 28((100)

SA 1((50.00) 1((50.00)

L 4((100.00)

SL 4((80.00) 1((20.00)

R 1((100.00)

SR 3((75.00) 1((25.00)

CL 5((100.00)

SCL 1((50.00) 1((50.00)

CR 2((50.00) 2((50.00)

SCR 1((50.00) 1((50.00)

Driving-Events-Detected-by-Pattern-Matcing-Algorithm

Gr
ou

nd
-T
ru
th
-
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event detection algorithm and more experimental results can be found in [16]. 

 

3.2 Automatic Reorientation of Accelerometer Sensor 
 

In order to measure the appropriate acceleration values to detect the vehicle’s movement the 

smartphone has to be fixed at a known orientation in the same plane and coordinate as the vehicle 

direction of travel for our current approach. This is one of the practical limitations for our approach 

as well as the existing approaches as users are not able to place the phone anywhere they desire 

making it impractical for real life application. In order to overcome this limitation the initial 

methodology discussed in this chapter proposes a method for automatic reorientation of the 

accelerometer on the smartphone to be used for driving events detection with no user input. The 

impact of this is that any ordinary smartphone user can download the application and evaluate their 

own driving behavior with their phones placed in any orientation, i.e. in their pockets, in their bags 

or in the vehicle’s console. 

 

 
 

Figure 7: The use of Automatic Smartphone Reorientation in Driving Event Detection 

 

Figure 7 illustrates the use of automatic smartphone reorientation for driving event detection. The 

main objective is to align the phone coordinate system with the vehicle’s coordinate in order to 

correctly measure the acceleration acting upon the phone. 

 

Let’s define the orientation of smartphone by using the ( , , )x y z coordinate system, as shown in 

Figure 8(a), and the vehicle-referenced ( ', ', ')x y z  coordinate system, as shown in Figure 8(b). 

Suppose now that the phone-referenced coordinate ( , , )x y z is not in alignment with the vehicle’s 

( ', ', ')x y z  coordinate system. To measure the vehicle movement from smartphone’s 

accelerometer, it is therefore necessary that the referenced coordinate system needs to be 

reoriented. 
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(a)  

 
(b) 

Figure 8  (a) The orientation of a smartphone described by ( , , )x y z coordinate system, and 

(b) the direction of the vehicle movement given by ( ', ', ')x y z coordinate system 

 

To specify the device-referenced frame in terms of the vehicle coordinate system, we often 

describe it in terms of the angular rotations around the three axes. As shown in Figure 9, the 

parameters , ,β α and φ represent the angular rotations around the ' , ' ,x y− −  and 'z − axes 

accordingly.  

Once these rotational angle parameters ( ), ,β α φ  are obtained, the phone-referenced coordinate 

system ( , , )x y z can be transformed into the vehicle-referenced coordinate system by multiplying 

with the reorientation matrices, where the rotation matrices corresponding to the angular rotations 

around ' , ' ,x y− − and 'z − axes are given by  

R x =

1, 0, 0
0, cosβ , −sinβ
0, sinβ , cosβ

"

#

$
$
$$

%

&

'
'
''
 

cos 0, sin
0, 1, 0 ,
sin 0, cos

,

,
y

α α

α α

− ⎞⎛
⎟⎜= ⎟⎜

⎜ ⎟
⎝ ⎠

R
cos sin 0
sin cos 0
0, 0,
, ,

1

, ,

z

φ φ

φ φ
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

R

 (1)

 

The reoriented coordinate system can be found from  

'
'
'

x x
y y
z z

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R , (2) 

where .z x y=R R R R  

 
(a) 

 
(b) 

 
 

(c) 
Figure 9 An illustration of angular rotations around (a) the 'x axis, (b) 'y axis, and (c) 'z axis 
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To estimate the angular rotation parameters ( , , )β α φ , let’s separate the analysis into two parts.  

First, let’s assume the angular rotation around the 'z − axis is equal to zero ( 0φ = ). That is, the 

projected vertical edge of a phone onto the ' 'x y− plane points in the same direction of the vehicle 

movement. In this case, the angular parameters α and β can be estimated at the beginning when 

a vehicle has not moved and the phone is kept idle. Hence, the only force that applies on the 

smartphone comes from the earth gravity, which is 29.8 /g m s= . If the phone is placed on the 

' 'x y− plane, then the readings on the ,x− and y − accelerations ( ,xa and ya ) will be zero. 

However, when 0α ≠  and/or 0β ≠ , the readings will indicate the magnitude of the projected 

gravity on the phone-referenced frame, where 

sin
sin

x

y

a g
a g

α

β

=

=           (3)
 

Thus, the parameters α and β  are found from ( )1sin / ,xa gα −=  and ( )1sin / .ya gβ −=  

 

Now, consider the scenario when the angular rotation around 'z − axis is non-zero ( 0φ ≠ ).  This 

illustrates the scenario when the phone’s heading is different from the vehicle’s heading. For the 

coordinate reorientation, it is therefore necessary to know the headings for both the vehicle and the 

smartphone. This can be done via exploiting the GPS and magnetometer information. First, the 

vehicle heading can be estimated from the tracking of vehicle movement by using the GPS. The 

change on the latitude and longitude of the moving vehicle can precisely indicate the vehicle 

heading. Meanwhile, a data from a magnetometer helps in finding the direction of a phone with 

respect to the North. As the vehicle moves, this angle that points to the North will change. By 

comparing the vehicle movement measured from the GPS with the change detected from the 

device magnetometer, the rotational angle φ around the z − axis can be found. 

 

3.2.1 Evaluation of Automatic Accelerometer Reorientation 
 

Reorientation Algorithm 

The objective of this Section is to examine the accuracy of the presented automatic 

accelerometer reorientation, together with the analysis on the use of reoriented accelerations to 

detect driving events in real-world scenario. In this experiment, two smartphones of the same 

model (iPhone 4s) were used. The first handset was placed on the floor in the back of the driver 

seat, where its orientation was in alignment to the vehicle movement. Meanwhile, the second 

handset was placed close to the first handset, but it was fixed on a device holder, where its 

orientation was described by the angular rotation of ( ) (15 ,23 ,30, , )β α φ ° ° °= . The sampling period 

is 500 .ms  The route that we used in this study is a freeway segment of the main route that links 
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perform an accelerometer reorientation, we need to know the rotational angle parameters 

( ), , .β α φ  The parameters ( ),β α are obtained first before the vehicle started moving. Meanwhile, 

the parameter θ  is estimated from the GPS and magnetometer when the vehicle is in motion. In 

this work, we assume the parameters ( ), ,β α φ  
are fixed and do not change during the experiment. 

In the case of varying angular rotation, however, the information from gyroscope which measures 

the change of angle over time may be employed to update the correct orientation of the phone in 

each cycle. 

Figure 10 compares the lateral and longitudinal accelerations between the referenced 

accelerometer and the automatic reoriented accelerometer. It is noted that the waveform of 

reoriented accelerometer looks very similar to the referenced accelerations indicating a good 

accuracy of the coordinate reorientation. This is shown in the red boxes with solid line. On the other 

hand, red boxes with dashed line refer to waveforms which are slightly dissimilar but proved to be 

insignificant as they are not the waveforms representing driving events but background noise. The 

acceleration error in terms of the root mean squared was found to be 0.102  and 20.065 /m s  for 

the x − and y −  accelerations respectively. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 10 Comparisons of (a) x − acceleration and (b) y − acceleration between the 

referenced accelerometer (in black), and the automatic reoriented accelerometer (in blue). 
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Two driving events, namely vehicle braking, and left lane-changing were examined in this 

experiment. Table 3 illustrates the total number of detected events after the reoriented 

accelerations were passed on to the driving event detection algorithm to evaluate drivers 

accordingly. 

 

Table 3 Comparison of the number of detected events between the referenced accelerations 

and the automatic reoriented accelerations 

 
Events 

 
Referenced 
(Handset 1) 

Reoriented 
Accelerations 

(Handset 2) 
 

Braking 
 

20 
 

24 
 

Left lane-changing 
 

26 
 

29 
 

  
(a)  

  
(b)  

Figure 11  Comparisons of (a) a scenario when both the referenced and the reoriented 

accelerometers were correctly detected the events, and (b) a scenario when the reoriented 

accelerometer detected the event, but the referenced acceleration did not. The y −
accelerations are shown on the left, and x − accelerations are shown on the right 

 

According to the results shown in Table 3, the numbers of detected events due to the reoriented 

accelerometers are slightly higher than those from the referenced accelerations in both events. 

This is mainly due to the unintended fluctuation of rotational angles when a vehicle was in motion. 

When this happens, the measured accelerations tend to fluctuate more, up to a certain degree, that 
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referenced and the reoriented accelerometers were correctly detected the events. The red boxes 

represent the part where driving events take place. Meanwhile, Figure 11(b) illustrates the case 

when the reoriented accelerometer detected the event, but the referenced acceleration did not.  
 

4. Data Collection with The Transport Co Ltd. 
 

In collaboration with the Transport Co Ltd, we have selected two routes for our data 

collection, Bangkok to Korat and Bangkok to Chiang Rai which are the two major routes out of 

Bangkok to the north eastern and northern regions of Thailand respectively. These two routes have 

different characteristics in that the route to Chiang Rai consists of many twists and turns along the 

way while the Korat route is more straight. 

 
 
 Table 4 Summary of data collection routes 
 

 
 
 

 
Figure 12 Map of data collection routes 
 
4.1 Experimental Setup 
 

Data collection is carried out on a commercial coach operating on the two routes with 30 

trips planned for each route. As a result, high number of samples can be obtained. We have set up 

a team of researchers to carry out data collection on these coaches. Three researchers are 

deployed for each coach. During the trip, a tester would place the smartphones in a specially made 

bag with carved out polystyrene as seen in Figure 13. This is to stop the phone from sliding out of 

position which would interfere with data collection process. The bag is placed so that the phones lie 

flat and pointing towards the same direction as the coach’s heading. On each smartphone we have 

installed our tailor made application which has the ability to record raw data from various sensors 

on board, i.e. accelerometer, magnetometer, GPS. Figure 14 shows the screenshots of data 

recorder application. It is designed to maximize ease of use with minimum number of buttons to be 

pressed. It is required that a record button is pressed once at the start of the trip. After that the 

phones are left untouched for the duration of the journey to collect raw driving data. The data 

Route Start 
Date 

End 
Date 

Number 
of trips 

Distance 
(km) 

Duration 
(hours) 

Bkk – Korat  26 Aug 15 Sep 30 270 
(approx.) 

4 

Bkk – 
Chiang Rai 

16 Sep 31 Oct 30 800 
(approx.) 

10 
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requiring users input until the end of the trip. Raw data can be exported via email and/or SD card. 

 

Figure 13 Driving data collection equipment      Figure 14 Sensory data collector application 

 

 

 

 

 

 

 

 

 

Figure 15 A Bag with Smartphones inside      Figure 16 A Researcher recording driving data 

 

A second equipment, a tablet, is used for manual recording of driving events which occur during the 

trip. A team of traffic engineering researchers will manually input any driving events during the trip 

for example, a left lane change or a sudden brake. This is achieved through our second application 

which is the driving event data collector. Events logged from this application will be used as a 

baseline to evaluate our driving event detection algorithm. Figure 16 shows a researcher operating 

on a tablet with our driving data collector application installed while figure 17 shows a screenshot of 

the application. Similar to the sensory data collector application, the driving data collector 

application user interface is optimized so that a researcher can easily indicate driving events which 

occur during a journey in real time. 
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Figure 17 Driving data collector application 

 
4.2 Results 
 

 Selected results from real world data collection with the Transport Co Ltd buses are shown 

in this section. Note that only sudden events are of interest here as they have higher risk of causing 

road accidents.  

 

Table 5: Number of Sudden Driving Events for Bangkok – Korat route 

 Number of Sudden Driving Events Only 

Brake Accelerate Left Right Change 
Left 

Change 
Right 

Total 

BKK - 
Korat 

Human 37 6 0 0 10 19 72 

Algorithm 23 1 0 3 13 11 51 
         

Korat - 
BKK 

Human 25 1 1 0 4 17 48 

Algorithm 22 8 5 1 7 17 60 

 

Table 5 shows the number of sudden driving events of Bangkok – Korat route. The table has been 

divided into two sections where the top part represents outward journey and bottom part represents 

return journey. In total 30 trips of this route has been carried out. From the table it can be seen that 

the number of detected sudden events from the algorithm is fairly close to the number indicated by 

our team of traffic engineering researchers. In addition it can be seen that the driving event 

detection algorithm is more sensitive in picking up sudden driving events on the return journey than 

the outward journey. Table 6 shows the Detection Rate and False Alarm Rate for detecting sudden 
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while the false alarm rate per second is very low for all cases. 

 

Table 6: Detection and False Alarm Rates for Sudden Events of Bangkok – Korat Route 

 BKK – Korat (Outward) Korat – BKK (Return) 

 Detection Rate 
(%) 

False Alarm 
Rate (%) 

Detection Rate 
(%) 

False Alarm Rate 
(%) 

Brake 62.16 0 88 0 

Accelerate 16.67 0 100 8.7 

Left Turn N/A N/A 100 8 

Right Turn N/A 10 N/A 10 

Lane Change Left 100 2.3 100 4.3 

Lane Change Right 57.89 0 100 0 

 

 
Figure 18 Dangerous driving events plot on a map of Bangkok – Korat Route 

 

Figure 18 illustrates a map of Bangkok – Korat route marked with aggressive driving events 

according to location of detection. This particular map is the summary of the return journey (Korat – 

Bangkok) consisting of 15 trips. Visually, it can be seen that driving events seem to cluster in 

certain areas of the route which indicates that these areas might potentially be accident prone. The 

mapping of sudden driving events to a geo-location map will definitely be useful for road surveyors 

and traffic engineers as they can integrate this data to analyze potential road hazards and hence 

might be used for black spot identification. 
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In the experiment with the Transport Co Ltd, 4 smartphones were used to collect driving 

data for each journey. These were Samsung Galaxy S4, Samsung Galaxy Y, Sony Xperia E and 

HTC Desire C. Samsung Galaxy Y is the cheapest handset costing approximately 3,000 Baht while 

the most expensive handset is the top Samsung model which is Galaxy S4 costing approximately 

21,000 Baht. The Sony Xperia E and HTC Desire C cost 4,990 and 6,990 respectively. The 

detailed comparison of specifications of these 4 smartphones can be found in Table 7. 

 

Table 7 Comparison of smartphone specifications to be used for data collection 

Phone Price OS Accelerometer Compass GPS 3G CPU RAM 

Samsung 

Galaxy Y 

3,290 2.3 Yes Yes Yes 900/2100 830MHz 290MB 

Sony Xperia E 4,990 4.1 Yes Yes Yes 900/2100 1 GHz 512MB 

HTC Desire C 6,990 4.0 Yes Yes Yes 900/2100 600 MHz 512MB 

Samsung 

Galaxy S4 

21,900 4.2 Yes Yes Yes 850/900/

2100 

1.6GHz 

quad core 

2GB 

 
 
An analysis is performed on the raw data from the four smartphones in order to assess the 

difference and similarity between accelerometer data collected from each phone. The metric of 

mean and standard deviation are utilized for this analysis. 

 

In general, it was found that all of the selected phones are able to pick up accelerometer sensor 

and GPS signals without any problem. An instance of raw accelerometer data is shown in Figure 

19. An occurrence of a driving event is indicated in the pink circle where a noticeable change of 

waveforms shape can be observed. Out of the 4 smartphones, the Galaxy Y and Sony Xperia E 

appear to be in sync in terms of the occurrence of the driving event while there is a shift for HTC 

Desire C and Galaxy S4. In addition it was found that the signal coming from accelerometer of the 

Sony Xperia E has an offset as the signal of the accelerometer while idle is higher than the other 3 

smartphones.  
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Figure 19 Raw Accelerometer Data of 4 Smartphones 

 

Table 8 Mean and Standard Deviation of Accelerometer Data 

 

 

Table 8 shows the mean and standard deviation of the raw accelerometer data of the 4 

smartphones. The mean value of the accelerometer data of Sony Xperia E is higher than the other 

3 due to the offset that was already discussed earlier. The table also indicates that Samsung 

Galaxy S4, is the most expensive handset, has the highest standard deviation which suggests that 

it is the most sensitive handset out of the four. 

Phone Mean SD 

Samsung Galaxy Y 0.515 0.381 

Sony Xperia E 1.287 0.332 

HTC Desire C 0.653 0.352 

Samsung Galaxy S4 0.721 0.402 
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e 
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sudden driving events. Figure 20 illustrates the number of detected sudden driving events for all of 

the 30 Bangkok – Korat trips. It can be seen that the number of detected driving events are slightly 

different for each of the smartphone model with a slight discrepancies between them. However, the 

difference in number of detected driving events is not significantly high as they seem to cluster in 

the same range. The reason for the discrepancy is due to slight difference in the raw data from 

each of the phones accelerometer sensor. Similar findings are reported for Bangkok Chiang Rai 

trips with higher the number of events due to longer distances travelled. This can be seen in Figure 

21. 

 
Figure 20 Number of Detected Sudden Driving Events for all 30 Bangkok – Korat Trips 

 

 
Figure 21 Number of Detected Sudden Driving Events for all 30 Bangkok – Chiang Rai Trips 
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 A mobile application has been created for the use of the proposed method of the detection 

of driving events. It is available on Android platform ready to download and will be ready for iOS by 

the end of April. Application features include: 

• Detect dangerous driving events 

• Warn drivers in real time 

• Historical data log 

• Provide a drive score at the end of the trip 

• Provide suggestions for the trip 

• Share driver’s score on Facebook 

Figure 22 shows screenshots of mobile application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Screenshots of Application 
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The work carried out in this project has been published in the following publications: 

 

• C. Saiprasert, T. Pholprasit, W. Pattara-atikom, “Detecting Driving Events Using 

Smartphone” in Proceedings of the 20th ITS World Congress, Japan, 2013 ** This paper 

has been invited for journal publication 

• P. Chaovalit, C. Saiprasert, T. Pholprasit, “A Method for Driving Event Detection Using SAX 

on Smartphone Sensors” in Proceedings of 13th IEEE International Conference on ITS 

Telecommunications (ITST), Finland, 2013 ** This paper has been invited for journal 

publication 

• N. Promwongsa, P. Chaisatsilp, S. Supakwong, C. Saiprasert, T. Pholprasit, P. 

Prathombutr, “Automatic Accelerometer Reorientation for Driving Event Detection Using 

Smartphone” in Poceedings of the 13th ITS Asia Pacific Forum, New Zealand, 2014 (to 

appear) 

 

8. Conclusion 
 

 This report presents a study of driving style evaluation using smartphones as a platform. In 

this report a novel algorithm to detect driving events such as braking, acceleration and lane change 

has been proposed based on the use of accelerometer sensor on a smartphone. The proposed 

approach is based on Dynamic Time Warping algorithm which is a pattern matching method. After 

identifying appropriate driving events for the incoming raw accelerometer data, these events are 

classified whether they are aggressive or not. It is essential to detect these aggressive driving 

events as they are the root cause of dangerous driving which causes road accidents. Therefore, 

the aim of this method is to warn drivers in real-time when these aggressive events are detected. In 

order to achieve that goal a mobile application to be run on iOS and Android smartphones has 

been created with many useful features for drivers for a safer drive. 

 

Further studies have been conducted to apply the law of forces in physics with the use of 

smartphone reorientation. A method of automatic reorientation of accelerometer sensor has been 

proposed in this report. With this proposed technique, smartphone users will be able to use our 

application with the phones placed in any orientation with respect to the vehicle that they are 

travelling in. 

 

Extensive data collection has been carried out in collaboration with the Transport Co Ltd for the 

driving behaviour of their coach drivers in two main routes connecting Bangkok with the north and 

north eastern parts of Thailand. In addition, a visualization mapping of potential black spot has 

been created. 
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